
Scheduling Multicast Traffic in Internally
Buffered Crossbar Switches*

Lotfi Mhamdi
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

e-mail: lotfi@cs.ust.hk

Mounir Hamdi
Department of Computer Science

The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

e-mail: hamdi@cs.ust.hk

Abstract∗—Scheduling multicast traffic has been an active
research topic due to the tremendous growth of multicast
traffic (audio, video, teleconferencing, etc.) on the Internet.
Considerable research work has been done on Input Queued
(IQ) switches to handle the multicast traffic. Unfortunately,
all the proposed solutions were of no practical value because
they either lack performance or were simply not practical.
Internally Buffered Crossbar (IBC) switches, on the other
hand, have been considered as a robust alternative to buffer-
less crossbar switches to improve the switching performance.
However, no work has ever been done on multicasting in IBC
switches. In this paper, we fill this gap and study, for the first
time, the multicasting problem in IBC switches. In particular,
we propose a simple scheduling scheme named Multicast
cross-points Round Robin (MXRR) for the IBC switch
architecture. Our scheme was shown to handle multicast
traffic more efficiently and far better than all previous
schemes. Yet, MXRR is both practical and achieves high
performance.

Index terms-- multicast, scheduling, buffered crossbar
fabric

I. INTRODUCTION
The Internet’s continued tremendous growth, coupled

with the variety of services it is expected to provide,
creates many challenges for the design and implementation
of packet switches. As a result, there has been extensive
research work in this area and many switching
architectures have been proposed. The output-queued
(OQ) switch is highly desirable for its optimal performance
and QoS guarantees [3]. Unfortunately, the lack of fast
enough memories along with the high internal speedup at
which the OQ must operate prohibited it to scale to even a
medium sized switch. Input-queued (IQ) switches,
however, have gained more interest because of their low
cost and high scalability [13]. While, the well known HoL
blocking problem limits the achievable throughput of an IQ
switch [10], the virtual output queuing (VOQ) architecture
[13, 14, 15] was proposed instead and has improved the
switching performance of FIFO-based IQ by several orders
of magnitude, hence making the IQ switches even more
attractive.

∗ This work was supported in part by the Hong Kong Research Grant

Council (Grant Number: RGC HKUST6181-01E).

In addition to point-to-point (unicast) switching, the
Internet is undergoing a remarkable transformation with
increasing point-to-multipoint (multicast) traffic. This is
mainly driven by the widespread of audio and video
material exchanged by users on the Internet. Unlike
unicast, multicasting means that an incoming cell is
destined for more than one output. Traditionally, handling
multicast traffic was not a simple or cost effective
operation and different architectures have been proposed
[10]. The fabric-based switch architecture was considered
an attractive solution due to the capability it offers in
transferring multicast cell at low cost. When a cell is
transferred through a crossbar fabric, it can reach as many
output ports as needed during the same time slot. This can
be done by setting the crossbar fabric configuration
(closing the corresponding cross-points) so that the cell
reaches the desired outputs simultaneously.

As a result, different crossbar-based architectures have
been proposed to handle multicast traffic. Most of these
architectures were based on multicast FIFO queues at the
ingress ports [1]. Those FIFO queues are used to
accommodate arriving multicast cells before getting
switched to their output ports. However, as with unicast
traffic, the HoL blocking problem limits the achievable
throughput and degrades the performance of the switch.
One of the straightforward approaches proposed to
overcome the HoL problem was the adoption of multicast
VOQ architecture [9]. For an N x M switch using the
multicast VOQ architecture, each input has to maintain up
to 2M-1 queue to match the number of fanout
configurations. For large switches, this architecture
becomes impractical and no arbitration scheme has ever
been proposed. As for the multicast FIFO architecture, a
plethora of algorithms has been proposed [1, 2, 4].
Unfortunately, for high-bandwidth switches, none of these
algorithms has been considered as an efficient solution
because they either lack performance or fairness or
implementation complexity, or all of the above. This is,
mostly, attributed to the centralized design of these
schedulers and to the nature of the crossbar-based
architecture.

In this paper, we propose a novel architecture to handle
multicast traffic. Our architecture is based on multicast

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1103

FIFO queues at the ingress ports with an internally
buffered crossbar (IBC) fabric. Through the rest of this
paper, we will refer to this architecture as Multicast
Internally Buffered Crossbar (MIBC) switch. In fact, the
IBC switch architecture has been shown to have great
potential in solving the complexity and scalability issues
faced by their buffer-less predecessors [7, 8, 12]. In
particular, we propose a scheduling scheme named
Multicast cross-points Round Robin (MXRR) algorithm.
We show that the MXRR scheduler achieves high
throughput and outperform all previously proposed
schemes. Yet, MXRR meets all the requirements for a
good choice because of its simple hardware
implementation and ability to achieve fairness.

The rest of the paper is organized as follows: section II
contains background knowledge and introduces the
multicast problem in more details. Section III introduces
the MIBC architecture along with our proposed MXRR
scheduling scheme. In section IV, we present a simulation
study and compare the MXRR to some state-of-the art
schemes. Finally, section V gives some concluding
remarks.

II. BACKGROUND KNOWLEDGE
A. Architectural Model

A multicast switching architecture customarily consists
of N input ports and M output ports. Each input port
contains a multicast FIFO queue that accommodates cells
coming to that input and destined to any of the output (or
set of output) ports. It is assumed that each arriving cell
contains a vector that indicates the set of output ports to
which this cell has to be switched to. For an N x M switch,
the destination vector of a multicast packet can be any of
2M-1 possible vectors. This vector is known as the fanout
of the input cell. Traditionally, researchers have tackled the
multicasting problem by mapping it to unicast scheduling.
The idea was to replicate every multicast input packet over
multiple packet times, generating one output packet per
packet time. Then each generated packet is equivalent to a
unicast packet and any unicast arbitration method can be
applied. However, this approach has two disadvantages [1].
First, each input must be copied multiple times, increasing
the required memory bandwidth. Second, the input packets
contend for access to the switch multiple times, reducing
the bandwidth available to other traffic at the same input.

Fig. 1: a 2 x 4 multicast crossbar switch

Depending on the output availability, a cell may or may
not reach all its outputs indicated by its fanout vector. With

this situation occurring, two different service disciplines
can be used for multicast packets [5]. The first is known as
no fanout-splitting, in which all of the packet copies must
be sent in the same packet time. If any of the output
packets loses contention for an output port, none of the
output packets are transmitted and the packet must try
again in the next time slot. If we consider the no fanout-
splitting discipline, only one cell from Fig. 1 can be
transferred. This is because both HoL cells in Q1 and Q2
have packets destined to outputs 2 and 3 and at most one
cell could be sent to an output per time slot. In contrast, the
second discipline is known as fanout-splitting, in which
output packets may be delivered to output ports over any
number of packet times. Only those output packets that are
unsuccessful in one packet time continue to contend for
output ports in the next time slot. Fanout-splitting provides
a higher switch throughput [6] for little increase in
implementation complexity. Higher throughput is achieved
because fanout-splitting is work conserving. In this paper,
we only consider fanout-splitting. If we consider again the
example in Fig. 1 and the fanout-splitting discipline, since
Q1 and Q2 both have cells destined to output ports 2 and 3,
we know that at the end of the scheduling phase we will
still find cells destined to those outputs. Then, depending
on the policy used, these two cells can be both queued
(concentrated) at either the HoL of Q1 or Q2. Or they can
be distributed over the two input queues, one cell in each
queue. For the sake of clarity, we introduce some
terminology, similar to that of [1], which is used
throughout the rest of this paper:

• Residue: the residue is defined as the number of
cells left at the HoL of the input queues after
loosing contention for the outputs at the end of each
time slot. In the case of Fig.1, the residue is equal to
{2,3}.

• Concentrating policy: a multicast scheduling policy
is said to be concentrating if, at the end of each time
slot, the residue is left on the smallest number of
input ports. If we refer to the example of Fig. 1,
such policy will leave the residue, {2,3}, either on
the input port number 1 or on the input port number
2, but not on both.

• Distributing policy: a multicast scheduling policy is
said to be distributing if, at the end of each time slot,
the residue is left on the largest number of input
ports. If we refer to the example of Fig. 1, this
policy will leave the residue, {2,3}, on both input
ports 1 and 2, and not on one port only.

Recently, several scheduling algorithms have been
proposed for the multicast FIFO crossbar switching
architecture. The following section describes some of these
algorithms.

B. Existing Scheduling Algorithms
As with the unicast scheduling, multicast scheduling has

been of high interest in the research community. As a result,
many algorithms have been proposed. These schemes can

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1104

be divided into two classes: weighted and non weighted
algorithms. An algorithm named Concentrate was
presented in [1]. The Concentrate algorithm always
concentrates the residue on the smallest number of input
ports. In the case of ties, Concentrate chooses the input
having the HoL cell with the shortest waiting time. This
algorithm was used as a basis to compare the performance
of other buffer-less algorithms, since it achieves the highest
throughput for the multicast FIFO crossbar switching
architecture. Unfortunately, the Concentrate algorithm is
not considered practical, since it requires up to N iterations
per time slot to complete. This makes it very hard to run at
high-speed or on a large sized switch. Moreover,
Concentrate is not considered a fair scheme, since it leads
to the permanent starvation of the input queues. Because
the performance of Concentrate can be used as upper
bound on throughput for comparing other algorithms, an
algorithm named TATRA was proposed in [1] and aimed
to approximate the throughput of the Concentrate policy.
The TATRA scheduling algorithm was motivated by Tetris,
the popular block-packing game. TATRA has the
properties of guaranteeing at least one input packet is
discharged each packet time, and also residue
concentration. Unfortunately, TATRA has two major
disadvantages: first, it is difficult to implement since the
process cannot be parallelized. It is simpler than the
Concentrate algorithm, but still requires N iterations per
time slot. Second, treating all inputs uniformly is of no
benefit when the inputs are non-uniformly loaded or when
some inputs request a higher priority.

A scheme named the Multicast Round-Robin Matching
(mRRM) was proposed in [2]. Designed to be simple to
implement in hardware, mRRM tends to concentrate the
selection onto a small number of inputs, while maintaining
fairness. However, unlike Concentrate, mRRM does not
perform well and cannot achieve high throughput and
therefore was not considered practical for high-speed
networks. Similar to mRRM, a scheme named the
Centralized Multicast Contention Resolution (CMCR) was
proposed in [4]. The only difference is that, instead of
maintaining a single output pointer, each output maintains
an independent pointer. This slight difference makes
CMCR unable to guarantee to completely serve a packet in
one time slot. Also, CMCR is a non-concentrating scheme,
which makes it perform worse than mRRM even though
the time complexity of the two is identical.

As a summary, we argue that each of the above
presented schemes tries to address some issues but fails to
meet other vital requirements. So far, none of these
algorithms proved simultaneously efficient in terms of high
throughput, practical in terms of implementation
complexity or fair with respect to the input FIFO queues.
In the following section, we propose our new architecture
along with a scheduling scheme that meets all these
requirements.

III. THE MULTICAST INTERNALLY BUFFERED
CROSSBAR SWITCH ARCHITECTURE (MIBC)

A. Motivation
Our choice of the multicast internally buffered crossbar

switch architecture is motivated by the fact this
architecture has key advantages that can serve to ensure
that the scheduling algorithm can be simple and efficient at
the same time. The presence of internal buffers drastically
improves the overall performance of the switch due to the
advantages it offers. First, the adoption of internal buffers
makes the scheduling totally distributed, hence reducing
dramatically the arbitration complexity and making it
linear. Second, and most importantly, these internal buffers
reduce (or avoid) the output contention. Meaning, they
allow the inputs to send cells to an output irrespective of
simultaneous cells transfer to the same output. If an output
is not ready to receive a cell from an input, the input still
can send it to the internal buffer provided that this internal
buffer has enough room for that cell.

B. Switch Model
We consider the switch model defined in Fig 2. Fixed

size packets, or cells, are considered. Upon their arrival to
the switch, variable length packets are segmented into cells
for internal processing and re-assembled before they leave
the switch. A processing cycle has a fixed length, called a
cell or time slot. There are N input cards, each one contains
a FIFO multicast queue. The internal fabric consists of NM
buffered crosspoints (XP). When an arriving cell, to an
input port i, ∀ 1 ≤ i ≤ N, has its fanout vector containing
the output j, ∀ 1 ≤ j ≤ M, it must go through the crosspoint
XPi,j, before continuing its journey to the output buffer.

Data

. . .

1

.

1

A rbiter A rbiter. . .

M ulticast Fifo

N

M

Internal crosspoint bufferFlow C ontrol
Input Card

M ulticast Fifo

Fig. 2: The N x M multicast internally buffered crossbar

(MIBC) switch architecture
As with unicast scheduling, a multicast scheduling cycle

consists of the following three steps: input scheduling,
output scheduling and delivery notifying. During the input
scheduling phase, each input, i, selects, in an independent
and parallel way, the HoL cell of its multicast FIFO queue
and sends it to the internal buffer corresponding to its
fanout set. Likewise, each output, j, selects, independently
and in parallel, a non empty crosspoint buffer, XPi,j, and
sends its cell to the output queue. Then, the delivery
notifying is performed to carry the flow control between
the internal buffers and the input queues. For each

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1105

delivered cell, the flow control mechanism “informs” the
corresponding input of the internal buffer status.

C. The Multicast Cross-point Round Robin (MXRR)
Algorithm

The description of each scheduling phase of the
Multicast cross-point Round Robin algorithm is as follows:

D. Example
Consider the following 2 x 4 MIBC switch. Let us

assume that the output pointers are all pointing to input 1
and all the internal buffers are empty.

Fig. 3: 2 x 4 MIBC switch

During the input scheduling phase, both HoL cells of Q1
and Q2 will be completely transferred to the internal
buffers. During the output scheduling phase, since the
output pointers have index 1 each, therefore every output j,
will select the internal buffer XP1,j, ∀ 1 ≤ j ≤ 4. This means
that, during this time slot, the HoL cell of Q1 is completely
served. At the beginning of the second time slot, XP2,2 ,
XP2,3 , and XP2,4 are occupied, therefore the second cell of
Q2 (which becomes the HoL cell) cannot send its cell to all
the outputs {1,3,4}. It only can send to XP2,1 which leaves
a residue of {3,4}. Q1, however, can send its HoL cell
completely to the internal buffers. During the output
scheduling phase, since the output pointer’s indexes are
incremented to 2, therefore each output j, will select the
internal buffer XP2,j, ∀ 1 ≤ j ≤ 4. This means that, during
this time slot, the HoL cell of Q2 is completely served and
part of the second cell as well. From this example, we draw

the following properties and advantages of the MXRR
scheduling scheme:

• The MXRR scheme guarantees the total service of at
least one packet each time due to the output pointers
setting (which point to the same internal buffer and
advance synchronously). Moreover, the time a packet
waits at the HoL is bounded by number of input ports, N.

• Fair and starvation free: Since the output pointers move
artificially and in a synchronous fashion irrespective of
the chosen packet, the starvation problem will never
occur. The chance of service for any two cells from two
different input ports is exactly the same due to the round
robin pointer movement.

• Simple in hardware implementation: Each input does
FIFO arbitration. The outputs, on the other hand, work in
a totally distributed and parallel manner. No
computation and comparison of weights is needed to
make an arbitration decision. Each output arbiter just
performs simple round-robin arbitration.

• Enhanced performance: Achieves high throughput and
has lower packet latency than all previously proposed
buffer less algorithms. We will examine this property in
the following section, which contains the simulation
results.

IV. PERFORMANCE STUDY
The simulation results are gathered from an 8x8 and a

16x16 switch respectively. Each point in the figures below
runs for 1,000,000 time slots, and the statistics are gathered
from the 100,000th time slot. We evaluated the different
algorithms under two uniform traffic models: Bernoulli and
bursty. The average burst size we use is B =16. For both
traffic models, the multicast vectors are uniformly
distributed over all possible multicast vectors. Since the
average fanout is (8+1)/2=4.5 for the 8x8 switch, and
(16+1)/2 = 8.5 for the 16x16 switch, and each output has
the same chance of being a destination, the average output
load is 4.5 times as much as the input load in the case of
the 8x8 switch and 8.5 in the case of 16x16 switch.

For comparison, we show the performance of
Concentrate, TATRA and our MXRR algorithm. We chose
Concentrate because it provides the highest throughput for
the single FIFO structure but is not considered a practical
algorithm. The choice of TATRA was because it is
considered as one of the practical algorithms that achieve
high performance.

Fig. 4 shows the average cell latency of an 8x8 FIFO
multicast switch employing Concentrate, TATRA and
MXRR algorithm. MXRR has a smaller average delay than
both other schemes when the traffic is Bernoulli (B = 1).
This result is achieved even when the traffic is bursty (B =
16) and with MXRR using a simpler scheduling scheme
(i.e., no iterations or weight are used).

• Input scheduling

Each input sends its HoL multicast cell to the set of
internal buffers corresponding to its fanout vector.
If one or more internal buffers are not free, the cell
stays at the HoL of that input and waits for the next
input scheduling phase to send to its remaining
internal buffers.

• Output scheduling
All the output pointers are, artificially, set to the
same initial position and incremented, each time
slot, by one mod (N).
Starting from its pointer’s index, each output selects
the first non empty cross point buffer and sends its
queued cell to the output buffer.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1106

0.12 0.14 0.16 0.18 0.2 0.22 0.24

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l d
el

ay

Offered Load

8x8 Switch under uniform traffic

MXRR
CONC
TATRA

B = 16

B = 1

Fig. 4: Delay performance of an 8x8 switch under uniform arrivals
As for the 16x16 switch’s performance, Fig. 5, the

MXRR shows the best performance again. TATRA has a
worse average delay than Concentrate.

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

10
0

10
1

10
2

10
3

10
4

A
ve

ra
ge

 C
el

l d
el

ay

Offered Load

16x16 Switch under uniform traffic

MXRR
CONC
TATRA

B = 16

B = 1

Fig. 5: Delay performance of a 16x16 switch under uniform arrivals
It is of note that the performance of the MXRR scheme

is expected to improve as the internal buffer size increases.
To this end, we studied the effect of the internal buffer size
on the performance of MXRR. Fig. 6 depicts the average
delay performance of MXRR scheme under Bernoulli I.I.D
uniform arrivals and different internal buffers sizes of 2, 4
and 8 cells respectively.

0.12 0.14 0.16 0.18 0.2 0.22 0.24

10
0

10
1

10
2

A
ve

ra
ge

 C
el

l d
el

ay

Offered Load

8x8 Switch under Bernoulli uniform traffic

MXRR(2)
MXRR(4)
MXRR(8)

Fig. 6: Average delay performance of MXRR scheme under Bernoulli
I.I.D uniform arrivals and different switch sizes

We can see that between a size of 2-cell internally
buffered crossbar switch and 4, there is a big improvement
in performance. However, the performance becomes
almost steady for internal buffers sizes beyond 4 cells.

V. CONCLUSION
This paper proposes a new architecture to address the

multicast traffic handling problem. Our new architecture,
based on the internally buffered crossbar fabric, along with
a simple scheduling scheme was shown to exhibit much
better performance than the buffer less architecture. In
particular, our proposed MXRR scheme was shown to
outperform all state-of-the-art algorithms. Yet, it is simple
to implement in hardware and able to run at very high
speed. We expect that, with more carefully designed
scheduling schemes for the MIBC switching architecture,
much higher performance can be achieved.

REFERENCES
[1] B. Prabhakar, N. McKeown, and R. Ahuja, “Multicast Scheduling

for Input-Queued Switches,” IEEE JSAC, June 1997.
[2] B. Prabhakar and N. McKeown, “Designing a Multicast Switch

Scheduler”, Proceedings of the 33rd Annual Allerton Conference on
Communication, Control, and Computing, pp. 984-993.
Montipacketo, Illinois, October 1995.

[3] Chuang, S.-T.; Goel A.; McKeown, N.; Prabhakar, B.; “Matching
output queueing with a combined input output queued switch,”
Computer Systems Technical Report CSL-TR-98-758, March 1998.

[4] H. J. Chao and J.-S. Park, “Centralized Contention Resolution
Schemes for A Large-Capacity Optical ATM Switch”, Proc. IEEE
ATM Workshop, Fairfax, VA, May 1998.

[5] J. F. Hayes, R. Breault, and M. Mehmet-Ali, “Performance Analysis
of a Multicast Switch”, IEEE Trans. Commun., vol. 39, No. 4, pp.
581-587, April, 1991.

[6] J. Y. Hui, and T. Renner, “Queuing Analysis for Multicast Packet
Switching,” IEEE Trans. Commun., vol. 42, no. 2/3/4, pp.723-731,
Feb. 1994.

[7] L. Mhamdi and M. Hamdi, “MCBF: A High-Performance
Scheduling Algorithm for Buffered Crossbar Switches,” IEEE
Communications Letters, Vol. 7, No. 9, Sept. 2003.

[8] L. Mhamdi and M. Hamdi, “Practical Scheduling Algorithms for
High-Performance Packet Switches”, IEEE ICC’03, Vol. 3, pp.
1659-1663. Alaska, May 2003.

[9] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri,
“Optimal Multicast Scheduling in Input-Queued Switches,” Proc.
ICC 2001, pp. 2021-2027.

[10] M. Guo, R. Chang, “Multicast ATM switches: survey and
performance evaluation”, Comp. Commun. Rev., vol. 28, pp. 198-
131, Apr. 1998.

[11] M. Karol, M. Hluchyj, and S. Morgan, “Input Versus Output
Queuing on a Space-Division Packet Switch,” IEEE Trans. on
Commun., Vol. COM-35, Dec. 1987, pp.1337 – 1356

[12] M. Nabeshima, “Performance Evaluation of Combined Input-and
Crosspoint-Queued Switch,” IEICE Trans. Commun., Vol. E83-B,
No.3 March 2000.

[13] N. McKeown, “Scheduling algorithms for input-queued cell
switches,” Ph.D. Thesis, University of California at Berkeley, 1995.

[14] T. Anderson, Owicki, S. Saxe, J. Thacker, C. “High speed switch
scheduling for local area networks,” ACM Transaction. on
Computer Systems, Nov.1993, pp. 319-352.

[15] Tamir, Y.; Chi, H.C.; “Symmetric crossbar arbiters for VLSI
communication switches” IEEE Transactions on Parallel and
Distributed Systems, Jan 1993. Vol.4, no.1, pp. 13-27.

0-7803-8533-0/04/$20.00 (c) 2004 IEEEIEEE Communications Society 1107

	footer1:

