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Abstract∗—Scheduling multicast traffic has been an active 
research topic due to the tremendous growth of multicast 
traffic (audio, video, teleconferencing, etc.) on the Internet. 
Considerable research work has been done on Input Queued 
(IQ) switches to handle the multicast traffic. Unfortunately, 
all the proposed solutions were of no practical value because 
they either lack performance or were simply not practical. 
Internally Buffered Crossbar (IBC) switches, on the other 
hand, have been considered as a robust alternative to buffer-
less crossbar switches to improve the switching performance. 
However, no work has ever been done on multicasting in IBC 
switches. In this paper, we fill this gap and study, for the first 
time, the multicasting problem in IBC switches. In particular, 
we propose a simple scheduling scheme named Multicast 
cross-points Round Robin (MXRR) for the IBC switch 
architecture. Our scheme was shown to handle multicast 
traffic more efficiently and far better than all previous 
schemes. Yet, MXRR is both practical and achieves high 
performance.  
 

Index terms-- multicast, scheduling, buffered crossbar 
fabric 

I. INTRODUCTION 
The Internet’s continued tremendous growth, coupled 

with the variety of services it is expected to provide, 
creates many challenges for the design and implementation 
of packet switches.  As a result, there has been extensive 
research work in this area and many switching 
architectures have been proposed.  The output-queued 
(OQ) switch is highly desirable for its optimal performance 
and QoS guarantees [3]. Unfortunately, the lack of fast 
enough memories along with the high internal speedup at 
which the OQ must operate prohibited it to scale to even a 
medium sized switch. Input-queued (IQ) switches, 
however, have gained more interest because of their low 
cost and high scalability [13]. While, the well known HoL 
blocking problem limits the achievable throughput of an IQ 
switch [10], the virtual output queuing (VOQ) architecture 
[13, 14, 15] was proposed instead and has improved the 
switching performance of FIFO-based IQ by several orders 
of magnitude, hence making the IQ switches even more 
attractive.  

                                                 
∗ This work was supported in part by the Hong Kong Research Grant 

Council (Grant Number:  RGC HKUST6181-01E). 

In addition to point-to-point (unicast) switching, the 
Internet is undergoing a remarkable transformation with 
increasing point-to-multipoint (multicast) traffic. This is 
mainly driven by the widespread of audio and video 
material exchanged by users on the Internet. Unlike 
unicast, multicasting means that an incoming cell is 
destined for more than one output. Traditionally, handling 
multicast traffic was not a simple or cost effective 
operation and different architectures have been proposed 
[10]. The fabric-based switch architecture was considered 
an attractive solution due to the capability it offers in 
transferring multicast cell at low cost. When a cell is 
transferred through a crossbar fabric, it can reach as many 
output ports as needed during the same time slot. This can 
be done by setting the crossbar fabric configuration 
(closing the corresponding cross-points) so that the cell 
reaches the desired outputs simultaneously.  

As a result, different crossbar-based architectures have 
been proposed to handle multicast traffic. Most of these 
architectures were based on multicast FIFO queues at the 
ingress ports [1]. Those FIFO queues are used to 
accommodate arriving multicast cells before getting 
switched to their output ports. However, as with unicast 
traffic, the HoL blocking problem limits the achievable 
throughput and degrades the performance of the switch.  
One of the straightforward approaches proposed to 
overcome the HoL problem was the adoption of multicast 
VOQ architecture [9].  For an N x M switch using the 
multicast VOQ architecture, each input has to maintain up 
to 2M-1 queue to match the number of fanout 
configurations. For large switches, this architecture 
becomes impractical and no arbitration scheme has ever 
been proposed. As for the multicast FIFO architecture, a 
plethora of algorithms has been proposed [1, 2, 4]. 
Unfortunately, for high-bandwidth switches, none of these 
algorithms has been considered as an efficient solution 
because they either lack performance or fairness or 
implementation complexity, or all of the above. This is, 
mostly, attributed to the centralized design of these 
schedulers and to the nature of the crossbar-based 
architecture. 

In this paper, we propose a novel architecture to handle 
multicast traffic. Our architecture is based on multicast 
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FIFO queues at the ingress ports with an internally 
buffered crossbar (IBC) fabric. Through the rest of this 
paper, we will refer to this architecture as Multicast 
Internally Buffered Crossbar (MIBC) switch. In fact, the 
IBC switch architecture has been shown to have great 
potential in solving the complexity and scalability issues 
faced by their buffer-less predecessors [7, 8, 12]. In 
particular, we propose a scheduling scheme named 
Multicast cross-points Round Robin (MXRR) algorithm. 
We show that the MXRR scheduler achieves high 
throughput and outperform all previously proposed 
schemes. Yet, MXRR meets all the requirements for a 
good choice because of its simple hardware 
implementation and ability to achieve fairness. 

The rest of the paper is organized as follows: section II 
contains background knowledge and introduces the 
multicast problem in more details. Section III introduces 
the MIBC architecture along with our proposed MXRR 
scheduling scheme. In section IV, we present a simulation 
study and compare the MXRR to some state-of-the art 
schemes. Finally, section V gives some concluding 
remarks. 

II. BACKGROUND KNOWLEDGE 
A. Architectural Model 

A multicast switching architecture customarily consists 
of N input ports and M output ports. Each input port 
contains a multicast FIFO queue that accommodates cells 
coming to that input and destined to any of the output (or 
set of output) ports. It is assumed that each arriving cell 
contains a vector that indicates the set of output ports to 
which this cell has to be switched to. For an N x M switch, 
the destination vector of a multicast packet can be any of 
2M-1 possible vectors. This vector is known as the fanout 
of the input cell. Traditionally, researchers have tackled the 
multicasting problem by mapping it to unicast scheduling. 
The idea was to replicate every multicast input packet over 
multiple packet times, generating one output packet per 
packet time. Then each generated packet is equivalent to a 
unicast packet and any unicast arbitration method can be 
applied. However, this approach has two disadvantages [1]. 
First, each input must be copied multiple times, increasing 
the required memory bandwidth. Second, the input packets 
contend for access to the switch multiple times, reducing 
the bandwidth available to other traffic at the same input.  

 
Fig. 1:  a 2 x 4 multicast crossbar switch 

Depending on the output availability, a cell may or may 
not reach all its outputs indicated by its fanout vector. With 

this situation occurring, two different service disciplines 
can be used for multicast packets [5]. The first is known as 
no fanout-splitting, in which all of the packet copies must 
be sent in the same packet time. If any of the output 
packets loses contention for an output port, none of the 
output packets are transmitted and the packet must try 
again in the next time slot. If we consider the no fanout-
splitting discipline, only one cell from Fig. 1 can be 
transferred. This is because both HoL cells in Q1 and Q2 
have packets destined to outputs 2 and 3 and at most one 
cell could be sent to an output per time slot. In contrast, the 
second discipline is known as fanout-splitting, in which 
output packets may be delivered to output ports over any 
number of packet times. Only those output packets that are 
unsuccessful in one packet time continue to contend for 
output ports in the next time slot. Fanout-splitting provides 
a higher switch throughput [6] for little increase in 
implementation complexity. Higher throughput is achieved 
because fanout-splitting is work conserving. In this paper, 
we only consider fanout-splitting. If we consider again the 
example in Fig. 1 and the fanout-splitting discipline, since 
Q1 and Q2 both have cells destined to output ports 2 and 3, 
we know that at the end of the scheduling phase we will 
still find cells destined to those outputs. Then, depending 
on the policy used, these two cells can be both queued 
(concentrated) at either the HoL of Q1 or Q2. Or they can 
be distributed over the two input queues, one cell in each 
queue. For the sake of clarity, we introduce some 
terminology, similar to that of [1], which is used 
throughout the rest of this paper: 

• Residue: the residue is defined as the number of 
cells left at the HoL of the input queues after 
loosing contention for the outputs at the end of each 
time slot. In the case of Fig.1, the residue is equal to 
{2,3}. 

• Concentrating policy: a multicast scheduling policy 
is said to be concentrating if, at the end of each time 
slot, the residue is left on the smallest number of 
input ports. If we refer to the example of Fig. 1, 
such policy will leave the residue, {2,3}, either on 
the input port number 1 or on the input port number 
2, but not on both. 

• Distributing policy: a multicast scheduling policy is 
said to be distributing if, at the end of each time slot, 
the residue is left on the largest number of input 
ports. If we refer to the example of Fig. 1, this 
policy will leave the residue, {2,3}, on both input 
ports 1 and 2, and not on one port only. 

Recently, several scheduling algorithms have been 
proposed for the multicast FIFO crossbar switching 
architecture. The following section describes some of these 
algorithms. 

B. Existing Scheduling Algorithms 
As with the unicast scheduling, multicast scheduling has 

been of high interest in the research community. As a result, 
many algorithms have been proposed. These schemes can 
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be divided into two classes: weighted and non weighted 
algorithms. An algorithm named Concentrate was 
presented in [1]. The Concentrate algorithm always 
concentrates the residue on the smallest number of input 
ports. In the case of ties, Concentrate chooses the input 
having the HoL cell with the shortest waiting time. This 
algorithm was used as a basis to compare the performance 
of other buffer-less algorithms, since it achieves the highest 
throughput for the multicast FIFO crossbar switching 
architecture. Unfortunately, the Concentrate algorithm is 
not considered practical, since it requires up to N iterations 
per time slot to complete. This makes it very hard to run at 
high-speed or on a large sized switch. Moreover, 
Concentrate is not considered a fair scheme, since it leads 
to the permanent starvation of the input queues. Because 
the performance of Concentrate can be used as upper 
bound on throughput for comparing other algorithms, an 
algorithm named TATRA was proposed in [1] and aimed 
to approximate the throughput of the Concentrate policy. 
The TATRA scheduling algorithm was motivated by Tetris, 
the popular block-packing game. TATRA has the 
properties of guaranteeing at least one input packet is 
discharged each packet time, and also residue 
concentration. Unfortunately, TATRA has two major 
disadvantages: first, it is difficult to implement since the 
process cannot be parallelized. It is simpler than the 
Concentrate algorithm, but still requires N iterations per 
time slot.  Second, treating all inputs uniformly is of no 
benefit when the inputs are non-uniformly loaded or when 
some inputs request a higher priority.  

A scheme named the Multicast Round-Robin Matching 
(mRRM) was proposed in [2]. Designed to be simple to 
implement in hardware, mRRM tends to concentrate the 
selection onto a small number of inputs, while maintaining 
fairness. However, unlike Concentrate, mRRM does not 
perform well and cannot achieve high throughput and 
therefore was not considered practical for high-speed 
networks. Similar to mRRM, a scheme named the 
Centralized Multicast Contention Resolution (CMCR) was 
proposed in [4]. The only difference is that, instead of 
maintaining a single output pointer, each output maintains 
an independent pointer. This slight difference makes 
CMCR unable to guarantee to completely serve a packet in 
one time slot. Also, CMCR is a non-concentrating scheme, 
which makes it perform worse than mRRM even though 
the time complexity of the two is identical.  

As a summary, we argue that each of the above 
presented schemes tries to address some issues but fails to 
meet other vital requirements. So far, none of these 
algorithms proved simultaneously efficient in terms of high 
throughput, practical in terms of implementation 
complexity or fair with respect to the input FIFO queues. 
In the following section, we propose our new architecture 
along with a scheduling scheme that meets all these 
requirements. 

III. THE MULTICAST INTERNALLY BUFFERED 
CROSSBAR SWITCH ARCHITECTURE (MIBC) 

A. Motivation 
Our choice of the multicast internally buffered crossbar 

switch architecture is motivated by the fact this 
architecture has key advantages that can serve to ensure 
that the scheduling algorithm can be simple and efficient at 
the same time. The presence of internal buffers drastically 
improves the overall performance of the switch due to the 
advantages it offers. First, the adoption of internal buffers 
makes the scheduling totally distributed, hence reducing 
dramatically the arbitration complexity and making it 
linear. Second, and most importantly, these internal buffers 
reduce (or avoid) the output contention. Meaning, they 
allow the inputs to send cells to an output irrespective of 
simultaneous cells transfer to the same output. If an output 
is not ready to receive a cell from an input, the input still 
can send it to the internal buffer provided that this internal 
buffer has enough room for that cell. 

B.  Switch Model 
We consider the switch model defined in Fig 2. Fixed 

size packets, or cells, are considered. Upon their arrival to 
the switch, variable length packets are segmented into cells 
for internal processing and re-assembled before they leave 
the switch. A processing cycle has a fixed length, called a 
cell or time slot. There are N input cards, each one contains 
a FIFO multicast queue. The internal fabric consists of NM 
buffered crosspoints (XP). When an arriving cell, to an 
input port i, ∀ 1 ≤ i ≤ N, has its fanout vector containing 
the output j, ∀ 1 ≤ j ≤ M, it must go through the crosspoint 
XPi,j, before continuing its journey to the output buffer. 

Data

. . .

1

. . .. . .

1

A rbiter A rbiter. . .

M ulticast Fifo

N

M

Internal crosspoint bufferFlow  C ontrol
Input Card

M ulticast Fifo

 
Fig. 2:  The N x M  multicast internally buffered crossbar 

(MIBC) switch architecture 
As with unicast scheduling, a multicast scheduling cycle 

consists of the following three steps: input scheduling, 
output scheduling and delivery notifying. During the input 
scheduling phase, each input, i, selects, in an independent 
and parallel way, the HoL cell of its multicast FIFO queue 
and sends it to the internal buffer corresponding to its 
fanout set. Likewise, each output, j, selects, independently 
and in parallel, a non empty crosspoint buffer, XPi,j, and 
sends its cell to the output queue. Then, the delivery 
notifying is performed to carry the flow control between 
the internal buffers and the input queues. For each 
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delivered cell, the flow control mechanism “informs” the 
corresponding input of the internal buffer status.  

C. The Multicast Cross-point Round Robin (MXRR) 
Algorithm 

The description of each scheduling phase of the 
Multicast cross-point Round Robin algorithm is as follows: 

 

 

 
 
 

 

 
 
 
 
 
 
 

D. Example 
Consider the following 2 x 4 MIBC switch. Let us 

assume that the output pointers are all pointing to input 1 
and all the internal buffers are empty.  
 

 
Fig. 3:   2 x 4  MIBC switch 

During the input scheduling phase, both HoL cells of Q1 
and Q2 will be completely transferred to the internal 
buffers. During the output scheduling phase, since the 
output pointers have index 1 each, therefore every output j, 
will select the internal buffer XP1,j, ∀ 1 ≤ j ≤ 4. This means 
that, during this time slot, the HoL cell of Q1 is completely 
served. At the beginning of the second time slot, XP2,2 , 
XP2,3 , and XP2,4  are occupied, therefore the second cell of 
Q2 (which becomes the HoL cell) cannot send its cell to all 
the outputs {1,3,4}. It only can send to XP2,1  which leaves 
a residue of {3,4}. Q1, however, can send its HoL cell 
completely to the internal buffers. During the output 
scheduling phase, since the output pointer’s indexes are 
incremented to 2, therefore each output j, will select the 
internal buffer XP2,j, ∀ 1 ≤ j ≤ 4. This means that, during 
this time slot, the HoL cell of Q2 is completely served and 
part of the second cell as well. From this example, we draw 

the following properties and advantages of the MXRR 
scheduling scheme: 

• The MXRR scheme guarantees the total service of at 
least one packet each time due to the output pointers 
setting (which point to the same internal buffer and 
advance synchronously). Moreover, the time a packet 
waits at the HoL is bounded by number of input ports, N.  

• Fair and starvation free: Since the output pointers move 
artificially and in a synchronous fashion irrespective of 
the chosen packet, the starvation problem will never 
occur. The chance of service for any two cells from two 
different input ports is exactly the same due to the round 
robin pointer movement. 

• Simple in hardware implementation: Each input does 
FIFO arbitration. The outputs, on the other hand, work in 
a totally distributed and parallel manner. No 
computation and comparison of weights is needed to 
make an arbitration decision. Each output arbiter just 
performs simple round-robin arbitration. 

• Enhanced performance: Achieves high throughput and 
has lower packet latency than all previously proposed 
buffer less algorithms. We will examine this property in 
the following section, which contains the simulation 
results. 

IV. PERFORMANCE STUDY 
The simulation results are gathered from an 8x8 and a 

16x16 switch respectively. Each point in the figures below 
runs for 1,000,000 time slots, and the statistics are gathered 
from the 100,000th time slot. We evaluated the different 
algorithms under two uniform traffic models: Bernoulli and 
bursty. The average burst size we use is B =16. For both 
traffic models, the multicast vectors are uniformly 
distributed over all possible multicast vectors. Since the 
average fanout is (8+1)/2=4.5 for the 8x8 switch, and 
(16+1)/2 = 8.5 for the 16x16 switch, and each output has 
the same chance of being a destination, the average output 
load is 4.5 times as much as the input load in the case of 
the 8x8 switch and 8.5 in the case of 16x16 switch. 

For comparison, we show the performance of 
Concentrate, TATRA and our MXRR algorithm. We chose 
Concentrate because it provides the highest throughput for 
the single FIFO structure but is not considered a practical 
algorithm. The choice of TATRA was because it is 
considered as one of the practical algorithms that achieve 
high performance.  

Fig. 4 shows the average cell latency of an 8x8 FIFO 
multicast switch employing Concentrate, TATRA and 
MXRR algorithm. MXRR has a smaller average delay than 
both other schemes when the traffic is Bernoulli (B = 1). 
This result is achieved even when the traffic is bursty (B = 
16) and with MXRR using a simpler scheduling scheme 
(i.e., no iterations or weight are used). 

• Input scheduling  

Each input sends its HoL multicast cell to the set of 
internal buffers corresponding to its fanout vector. 
If one or more internal buffers are not free, the cell 
stays at the HoL of that input and waits for the next 
input scheduling phase to send to its remaining 
internal buffers. 

• Output scheduling 
All the output pointers are, artificially, set to the 
same initial position and incremented, each time 
slot, by one mod (N). 
Starting from its pointer’s index, each output selects 
the first non empty cross point buffer and sends its 
queued cell to the output buffer. 
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Fig. 4:   Delay performance of an 8x8 switch under uniform arrivals 
As for the 16x16 switch’s performance, Fig. 5, the 

MXRR shows the best performance again. TATRA has a 
worse average delay than Concentrate. 
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Fig. 5:   Delay performance of a 16x16 switch under uniform arrivals 
It is of note that the performance of the MXRR scheme 

is expected to improve as the internal buffer size increases. 
To this end, we studied the effect of the internal buffer size 
on the performance of MXRR. Fig. 6 depicts the average 
delay performance of MXRR scheme under Bernoulli I.I.D 
uniform arrivals and different internal buffers sizes of 2, 4 
and 8 cells respectively. 
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Fig. 6:   Average delay performance of MXRR scheme under Bernoulli 
I.I.D uniform arrivals and different switch sizes 

We can see that between a size of 2-cell internally 
buffered crossbar switch and 4, there is a big improvement 
in performance. However, the performance becomes 
almost steady for internal buffers sizes beyond 4 cells. 

V. CONCLUSION 
This paper proposes a new architecture to address the 

multicast traffic handling problem. Our new architecture, 
based on the internally buffered crossbar fabric, along with 
a simple scheduling scheme was shown to exhibit much 
better performance than the buffer less architecture. In 
particular, our proposed MXRR scheme was shown to 
outperform all state-of-the-art algorithms. Yet, it is simple 
to implement in hardware and able to run at very high 
speed. We expect that, with more carefully designed 
scheduling schemes for the MIBC switching architecture, 
much higher performance can be achieved.  
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